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ANALYSIS OF N O N L I N E A R  S O L U T I O N S  

W I T H  M A N Y  S I N G U L A R  P O I N T S  IN P R O B L E M S  

OF SPATIAL D E F O R M A T I O N  OF RODS 

V. V. Kuznetsov and S. V. Levyakov UDC 539.3 

We consider an algorithm for obtaining numerical solutions of the geometrically nonlinear 
problems of spatial deformation of elastic rods in the presence of many singular points. The 
questions of the construction of bifurcation solutions and the stability of the found states of 
equilibrium are discussed. The results of a study of the nonlinear deformation and stability of 
a ring in the spatial formulation, which are supported by experimental data, are given. 

1. The theory of kinematic groups [1] is aimed at constructing and studying the discrete analogs of 
the nonlinear models of deformable bodies, without restricting their displacements and rotations. 

From the viewpoint of a study of the geometrically nonlinear behavior of elastic bodies, thin rods are 
of great interest, because in them more significant changes than in shells and plates easily occur in the initial 
configuration upon elastic deformation for a wide class of support conditions. The majority of investigations 
dealing with flexible rods consider a particular case of deformation, namely, plane curving [2-7]. Numerical 
algorithms for solving the problems of the nonlinear statics of rods in the spatial formulation were proposed 
in [8-10]. However, spatial curving investigations were restricted to the initial deformation site and one 
bifurcation solution corresponding to the first bifurcation point. The possibility of the existence of solutions 
with many singular points in the region of arbitrary displacements of rods was not yet studied. 

In the present paper, the algorithm for studying the nonlinear deformation and stability of spatial rods 
is considered using the finite-element model [1] corresponding to the nonlinear Kirchhoff theory. In the rod 
calculation, the values of the coordinates and direction cosines of two attached vectors lying in the plane of 
the transverse cross section should be specified as the initial data for each node of the calculation scheme. 

The nonlinear problem of the spatial elasticity of a circular ring loaded by four forces in its plane is 
solved. This problem for a thin cylindrical shell was investigated by Kuznetsov and Soinikov [11]. Here we show 
that as the shell is shortened and may be regarded as a thin ring, the diversity of the equilibrium configurations 
considerably increases, which is due to the appearance of new bifurcation points. The calculation results are 
compared with experimental data. 

2. The problem of determination of the strain state of a rod is solved by the discrete-continuation 
method, which is a step-by-step process involving the iterative improvement of the solution at each step. 

The state of the discrete model of a rod is characterized by N generalized coordinates and the external- 
load parameter, which is considered to be a desired parameter. The consideration of the equilibrium conditions 
leads to the set of equations of the Newton-Raphson method 

Hk-1/Sqk + wk-18q~r+l + gk-1 = 0, (2.1) 

where g and H are the gradient and Hessian matrix of the ensemble of finite elements, the components of the 
vector w are determined by the formula wi = 02W/OqiOqN+l (i = 1, . . . ,  N), the vector//q includes variations 
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of the coordinates of the nodes and the components of the nodal rotation vectors [1], 6qlv+l is the increment of 
the load parameter, W is the potential of external forces, and the superscript k denotes the iteration number. 

The solution of system (2.1) is sought in the form 

6qk = 6qN+iX k + yk, 

where x t and yk satisfy the systems 

H k - l x  k + w  k - l = 0 ,  H k - l y k + g k - l = 0 .  

The increment of the load parameter is calculated by the formulas 

6q~+l = :~6s/(1 + (x ' ) tx ' )  1/2 for k = 1; (2.2) 

6q~+1 = - ( x ' ) t y t / ( 1  + (x ' ) tx ' )  for k > 1, (2.3) 

where 6s is the step of continuation. The sign in (2.2) determines the direction of motion along the curve of 
the states of equilibrium. Formulas for the determination of the deformed configuration of a discrete system 
from the found vector components 6q t are presented in [1]. 

In the motion along the curve of the state of equilibrium, the fixed-sigu property of all angular minors 
of the matrix H ~ is analyzed at each step. According to the Sylvester criterion, the state of equilibrium is 
stable if all the angular minors are defined positively and unstable otherwise. The zero value of one or more 
minors points to the existence of the critical point. The multiplicity of this point is determined by the number 
of simultaneously vanishing angular minors in H ~ Since the process of solution is discrete, the change of the 
sign of the angular minors means the passage through the critical point. However, the sign alternation can 
indicate that one of the minors touches the zero. This situation is clarified by analyzing the behavior of the 
determinant of the matrix H ~ at a fairly small step of continuation. 

In the case of singular points, the matrix H ~ is degenerate. The type of the singular point is determined 
depending on whether system (2) is compatible or not. If the system is incompatible, the general solution for 
k = 1 has the form 

6q' = Pifi, 5q~+, = 0 (i = 1, . . . , l  < N), (2.4) 

where #i are arbitrary multipliers and fi are the linearly independent nontrivial solutions of the homogeneous 
set H~ = 0 ( i  = 1 , . . . ,  l). The vectors fi determine the directions of continuation of the solution in the 
neighborhood of the singular point. The solution will be further refined using formula (2.3). 

If system (2.1) is compatible for det H ~ = 0, the general solution is written in the form 

5q' = 6q~v+lx 1 + Pifi (i = 1 , . . . ,  1 < N). 

The solution can be continued in one of (!+1) directions by means of (2.2) and (2.3) for pl = p2 = -.- = Pt = 0 
or by (2.4) and (2.3) for 6q~r 1 = 0. 

3. We consider the spectrum of nonlinear solutions in the problem of curving of a circular ring having 
a narrow rectangular cross section, which is compressed by four equidistant radial forces P. The following 
parameters of the problem are adopted: L/h = 10, R/L = 10, and u - 0.3, where L and h are the dimensions 
of the cross section, R is the radius of the ring, and u is the Poisson ratio. The ring can be regarded as a very 
short cylindrical shell of length L. The design is partitioned into 40 finite rod elements of equal length. At 
each point of force application, two restrictions are introduced, one of which is imposed on the out-of-plane 
displacement of the ring, and the other on the displacement along the direction of the tangent to the axial 
line. Thus, the displacements only in the radial direction are allowed for the points of force application, and 
the rotation of the transverse cross sections remain free. We study a purely mathematical solution of the 
problem without eliminating the self-intersection of the ring. 

Figure 1 shows the diagram of the states of equilibrium, where the displacement u of the point a, which 
is referred to the ring radius, is plotted as the abscissa, and the load parameter ), = PR2/EI,  where E is 
the Young modulus and I = Lh3/12 is the smaller moment of inertia of the cross section, is plotted as the 
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Fig. 1. Diagram of the states of equilibrium of the ring: solid and 
dashed curves refer to the steady and unstable stable of equilibrium, 
respectively. 

ordinate. In essence, the projection of the deformation curves in the (N + 1)-dimensional space onto the plane 
of the parameters A and u is given. 

The plane four-lobe configurations of the ring correspond to the basic deformation branch passing 
through the undeformed-state point 0. Three bifurcation points B01, B02, and B03 were found on the basic 
branch in the range of deflection variation (0 < u < 1). We consider each point and study the corresponding 
branches of the nonlinear solutions. 

Point B01 was considered by Alfutov et al. [12] and Seide and Albano [13]. The critical value that we 
calculated, A. -- 6.155, is close to A. = 6.1104 [13] found by an analytical method for an inelastic ring. At 
this point, the passage to the new steady states of equilibrium (the branch B l l ' -B01-Bl l )  occurs. On this 
branch, the ring acquires the characteristic dumbbell-like shape keeping the double symmetry of deformation. 
Figure 2 shows the shape of the ring in the state corresponding to point B l l  (it is rotated turned by 90 ~ at 
Bll ' ) .  For A, = 6.902 (the states corresponding to B l l  and Bl l ' ) ,  the repeated loss of stability caused by 
the lateral buckling of the elongated dumbbell-like configuration occurs. Its character is similar to the loss of 
stability of the Euler rod. This bifurcation point and the supercritical behavior of the ring were investigated 
by Kuznetsov and Soinikov in [3], where the critical load parameter was calculated with an error of 5.7%. 

At point B02 (A. = 12.318), a transition to the spatial flexural-torsional equilibrium shapes is possible 
on the basic deformation branch. Figure 3 shows the ring shape calculated for A = 8.75 (condition 1, Fig. 1). 
This shape of the supercritical deformation was found in [11] in analyzing the curving of a short cylindrical 
shell ( R / L  = 1) loaded by four radial forces. The calculations show that the branch of the solution describing 
the spatial deformation of the ring is a closed curve with four bifurcation points B02, B21, B21 ', and B22; the 
last three were found for the first time. Figure 4 shows the diagram of the states of equilibrium in the plane 
of the parameters A and w, where w is the displacement from the plane of the initial curvature of the ring, 
referred to the radius R, for a node equidistant from the points of force application a and b. In the motion along 
this branch of the states of equilibrium, det H ~ changes sign at bifurcation points B21 and B21' and touches 
the zero at points B02 and B22. At points B21 and B21' the transition occurs to the new spatial equilibrium 
shapes, which are not considered here. One more branch of steady plane equilibrium configurations passes 
through point B22. For example, in the state corresponding to point B22 (A. = -2.810) the ring takes the 
shape shown in Fig. 5. In the state corresponding to point 2 on this branch (see Fig. 1), which corresponds 
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Fig. 2. Dumbbell-like equilibrium configuration of the ring for A. = 6.902. 

Fig. 3. SpatiM flexural-torsionM equilibrium configuration of the ring for A = 8.75. 
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Fig. 4. Diagra~n of the spatial states of equilibrium of the ring. 

Fig. 5. Plane equilibrium configuration of the ring for A. = -2 .81 .  
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Fig. 6. Spatial configuration of the ring obtained in the experiment. 

to the zero load, the ring takes the shape of a spiral inserted in a circle of radius R/3. 
In contrast to the singular points considered, bifurcation point B03 (~. = 16.670) has multiplicity 2, 

i.e., two solutions bifurcate at this point (branches 3-B03-3 ~ and 3"-B03-3 m in Fig. 1) to which correspond 
the plane equilibrium configurations. 

The phenomenon of the loss of stability of the plane form of curving and the subsequent deformation of 
the ring can be reproduced in fragments in the experiment on a thin celluloid model loaded by four stretched 
radial filaments. Gradually increasing the tension of the filaments, one can observe a transition from plane 
four-lobe equilibrium configurations to spatial configurations of the ring. Figure 6 shows a deformation of the 
ring's state similar to that in Fig. 3. A subsequent loading causes a pop and, as a result, the ring tends to 
the state at point 2 (see Fig. 1) at which the tension of the filaments disappears. This configuration cannot 
be strictly reproduced in the experiment, because the dimensions of the transverse cross section of the model 
are finite. 

The study of the problem in the spatial formulation by means of the developed algorithm has allowed 
us to reveal previously unknown singular points of the nonlinear solution, to study the deformation of the 
ring, and to determine the stability of the found states of equilibrium. The results do not cover all possible 
equilibrium configurations. These can be obtained by continuing the solution along the considered branches 
and, possibly, new singular points can be detected. 

R E F E R E N C E S  

. 

2. 
3. 

4. 

5. 

6. 

7. 

V. V. Kuznetsov and S. V. Levyakov, "Kinematic groups and finite elements in solid-state mechanics," 
Izv. Ross. Akad. Nauk, Mekh. Tverd. Tela, No. 3, 67-82 (1994). 
E. P. Popov, Theory and Calculation of Flexible Elastic Rods [in Russian], Nauka, Moscow (1986). 
V. V. Kuznetsov and Yu. V. Soinikov, "Numerical solution of problems of nonlinear curving of plane 
rods," Prikl. Mekh., 22, No. 10, 91-98 (1986). 
S. Srpcic and M. Saje, "Large deformations of thin curved plane beam of constant initial curvature," 
Int. J. Mech. Sci., 28, No. 5, 275-287 (1986). 
R. E. Miller, "Numerical analysis of generalized plane elastica," Int. J. Num. Meth. Eng., 15, No. 3, 
325-332 (1980). 
Yu. M. Volchkov, G. V. Ivanov, and O. N. Ivanova, "Calculation of the plane equilibrium shapes of 
thin rods by the method of self-balanced residues," Prikl Mekh. Tekh. Fiz., 35, No. 2, 142-151 (1994). 
]~. I. Grigolyuk, "Nonlinear behavior of slanting rods, " Dokl. Ross. Akad. Nauk, 348, No. 6, 759-763 
(1996). 

953 



. 

9. 

10. 

II.  

12. 

13. 

K. J. Bathe and S. Bolourchi, "Large displacement analysis of three-dimensional beam structures," 
Int. J. Num. Meth. Eng., 14, No. 7, 961-986 (1979). 
K. S. Surana and R. M. Sorem, "Geometrically non-linear formulation for three-dimensional curved 
beam elements with large rotations," Int. J. Num. Meth. Eng., 28, No. 1, 43-73 (1989). 
G. V. Ivanov and O. N. Ivanova, "Calculation of the spatial equilibrium configurations of thin elastic 
rods by the method of self-balanced residuals," Prikl Mekh. Tekh. Fiz., 35, No. 4, 130-136 (1994). 
V. V. Kuznetsov and Yu. V. Soinikov, "Shell deformations in arbitrary displacements by the finite- 
element method," Izv. Akad. Nauk SSSR, Mekh. Tverd. Tela, No. 1,131-138 (1987). 
N. A. Alfutov, Yu. I. Klyuev, and V. V. Trofimov, "Stability of a circular ring under essentially 
nonaxisymmetrical loading," in: Proc. of VIII All-Union Conf. on the Theory of Shells and Plates 
(Rostov-on-Don) [in Russian] Nanka, Moscow (1971), pp. 209-213. 
P. Seide and E. D. Albano, "Bifurcation of circular rings under normal concentrated loads," Trans. 
ASME, Ser. E, J. Appl. Mech., 40, No. 1,233-238 (1973). 

954 


